DLSS stands for deep learning super sampling. It’s a type of video rendering technique that looks to boost framerates by rendering frames at a lower resolution than displayed and using deep learning, a type of AI, to upscale the frames so that they look as sharp as expected at the native resolution. For example, with DLSS, a game’s frames could be rendered at 1080p resolution, making higher framerates more attainable, then upscaled and output at 4K resolution, bringing sharper image quality over 1080p.
This is an alternative to other rendering techniques — like temporal anti-aliasing (TAA), a post-processing algorithm — that requires an RTX graphics card and game support (see the DLSS Games section below). Games that run at lower frame rates or higher resolutions benefit the most from DLSS.
According to Nvidia, DLSS 2.0, the most common version, can boost framerates by 200-300% (see the DLSS 2.0 section below for more). The original DLSS is in far fewer games and we’ve found it to be less effective, but Nvidia says it can boost framerates “by over 70%.” DLSS can really come in handy, even with the best graphics cards, when gaming at a high resolution or with ray tracing, both of which can cause framerates to drop substantially compared to 1080p.
In our experience, it’s difficult to spot the difference between a game rendered at native 4K and one rendered in 1080p and upscaled to 4K via DLSS 2.0 (that’s the ‘performance’ mode with 4x upscaling). In motion, it’s almost impossible to tell the difference between DLSS 2.0 in quality mode (i.e., 1440p upscaled to 4K), though the performance gains aren’t as great.
For a comparison on how DLSS impacts game performance with ray tracing, see: AMD vs Nvidia: Which GPUs Are Best for Ray Tracing?. In that testing we only used DLSS 2.0 in quality mode (2x upscaling), and the gains are still quite large in the more demanding games.
When DLSS was first released, Nvidia claimed it showed more temporal stability and image clarity than TAA. While that might be technically true, it varies depending on the game, and we much prefer DLSS 2.0 over DLSS 1.0. An Nvidia rep confirmed to us that because DLSS requires a fixed amount of GPU time per frame to run the deep learning neural network, games running at high framerates or low resolutions may not have seen a performance boost with DLSS 1.0.
Below is a video from Nvidia (so take it with a grain of salt), comparing Cyberpunk 2007 gameplay at both 1440p resolution and 4K with DLSS 2.0 on versus DLSS 2.0 off.
DLSS is only available with RTX graphics cards, but AMD is working on its own alternative for Team Red graphics cards. AMD Fidelity FX Super Resolution (FSR) is supposed to debut in 2021. It will require separate support from games, and we haven’t seen it in action yet. But like other FidelityFX technologies, it’s supposed to be GPU agnostic, meaning it will work on Nvidia and even Intel GPUs that have the necessary hardware features. We’re also expecting the next Nintendo Switch to have DLSS via an integrated SoC designed by Nvidia.
DLSS Games
In order to use DLSS, you need an RTX graphics card and need to be playing a game that supports the feature. You can find a full list of games supporting DLSS as of April via Nvidia below. Unreal Engine and Unity Engine also both have support for DLSS 2.0, meaning games using those engines should be able to easily implement DLSS.
- Anthem
- Battlefield V
- Bright Memory
- Call of Duty: Black Ops Cold War
- Call of Duty: Modern Warfare
- Call of Duty: Warzone
- Control
- CRSED: F.O.A.D. (Formerly Cuisine Royale)
- Crysis Remastered
- Cyberpunk 2077
- Death Stranding
- Deliver Us the Moon
- Edge of Eternity
- Enlisted
- F1 2020
- Final Fantasy XV
- Fortnite
- Ghostrunner
- Gu Jian Qi Tan Online
- Iron Conflict
- Justice
- Marvel’s Avengers
- MechWarrior 5: Mercenaries
- Metro Exodus
- Metro Exodus PC Enhanced Edition
- Minecraft With RTX For Windows 10
- Monster Hunter: World
- Moonlight Blade
- Mortal Shell
- Mount & Blade II: Bannerlord
- Nioh 2 – The Complete Edition
- Outriders
- Pumpkin Jack
- Shadow of the Tomb Raider
- System Shock
- The Fabled Woods
- The Medium
- War Thunder
- Watch Dogs: Legion
- Wolfenstein: Youngblood
- Xuan-Yuan Sword VII
DLSS 2.0 and DLSS 2.1
In March 2020, Nvidia announced DLSS 2.0, an updated version of DLSS that uses a new deep learning neural network that’s supposed to be up to 2 times faster than DLSS 1.0 because it leverages RTX cards’ AI processors, called Tensor Cores, more efficiently. This faster network also allows the company to remove any restrictions on supported GPUs, settings and resolutions.
DLSS 2.0 is also supposed to offer better image quality while promising up to 2-3 times the framerate (in 4K Performance Mode) compared to the predecessor’s up to around 70% fps boost. Using DLSS 2.0’s 4K Performance Mode, Nvidia claims an RTX 2060 graphics card can run games at max settings at a playable framerate. Again, a game has to support DLSS 2.0, and you need an RTX graphics card to reap the benefits.
The original DLSS was apparently limited to about 2x upscaling (Nvidia hasn’t confirmed this directly), and many games limited how it could be used. For example, in Battlefield V, if you have an RTX 2080 Ti or faster GPU, you can only enable DLSS at 4K — not at 1080p or 1440p. That’s because the overhead of DLSS 1.0 often outweighed any potential benefit at lower resolutions and high framerates.
In September 2020, Nvidia released DLSS 2.1, which added an Ultra Performance Mode for super high-res gaming (9x upscaling), support for VR games, and dynamic resolution. The latter, an Nvidia rep told Tom’s Hardware, means that, “The input buffer can change dimensions from frame to frame while the output size remains fixed. If the rendering engine supports dynamic resolution, DLSS can be used to perform the required upscale to the display resolution.” Note that you’ll often hear people referring to both the original DLSS 2.0 and the 2.1 update as “DLSS 2.0.”
DLSS 2.0 Selectable Modes
One of the most notable changes between the original DLSS and the fancy DLSS 2.0 version is the introduction of selectable image quality modes: Quality, Balanced, or Performance — and Ultra Performance with 2.1. This affects the game’s rendering resolution, with improved performance but lower image quality as you go through that list.
With 2.0, Performance mode offered the biggest jump, upscaling games from 1080p to 4K. That’s 4x upscaling (2x width and 2x height). Balanced mode uses 3x upscaling, and Quality mode uses 2x upscaling. The Ultra Performance mode introduced with DLSS 2.1 uses 9x upscaling and is mostly intended for gaming at 8K resolution (7680 x 4320) with the RTX 3090. While it can technically be used at lower target resolutions, the upscaling artifacts are very noticeable, even at 4K (720p upscaled). Basically, DLSS looks better as it gets more pixels to work with, so while 720p to 1080p looks good, rendering at 1080p or higher resolutions will achieve a better end result.
How does all of that affect performance and quality compared to the original DLSS? For an idea, we can turn to Control, which originally had DLSS 1.0 and then received DLSS 2.0 support when released. (Remember, the following image comes from Nvidia, so it’d be wise to take it with a grain of salt too.)
One of the improvements DLSS 2.0 is supposed to bring is strong image quality in areas with moving objects. The updated rendering in the above fan image looks far better than the image using DLSS 1.0, which actually looked noticeably worse than having DLSS off.
DLSS 2.0 is also supposed to provide an improvement over standard DLSS in areas of the image where details are more subtle.
Nvidia promised that DLSS 2.0 would result in greater game adoption. That’s because the original DLSS required training the AI network for every new game needed DLSS support. DLSS 2.0 uses a generalized network, meaning it works across all games and is trained by using “non-game-specific content,” as per Nvidia.
For a game to support the original DLSS, the developer had to implement it, and then the AI network had to be trained specifically for that game. With DLSS 2.0, that latter step is eliminated. The game developer still has to implement DLSS 2.0, but it should take a lot less work, since it’s a general AI network. It also means updates to the DLSS engine (in the drivers) can improve quality for existing games. Unreal Engine 4 and Unity have both also added DLSS 2.0 support, which means it’s trivial for games based on those engines to enable the feature.
How Does DLSS Work?
Both the original DLSS and DLSS 2.0 work with Nvidia’s NGX supercomputer for training of their respective AI networks, as well as RTX cards’ Tensor Cores, which are used for AI-based rendering.
For a game to get DLSS 1.0 support, first Nvidia had to train the DLSS AI neural network, a type of AI network called convolutional autoencoder, with NGX. It started by showing the network thousands of screen captures from the game, each with 64x supersample anti-aliasing. Nvidia also showed the neural network images that didn’t use anti-aliasing. The network then compared the shots to learn how to “approximate the quality” of the 64x supersample anti-aliased image using lower quality source frames. The goal was higher image quality without hurting the framerate too much.
The AI network would then repeat this process, tweaking its algorithms along the way so that it could eventually come close to matching the 64x quality with the base quality images via inference. The end result was “anti-aliasing approaching the quality of [64x Super Sampled], whilst avoiding the issues associated with TAA, such as screen-wide blurring, motion-based blur, ghosting and artifacting on transparencies,” Nvidia explained in 2018.
DLSS also uses what Nvidia calls “temporal feedback techniques” to ensure sharp detail in the game’s images and “improved stability from frame to frame.” Temporal feedback is the process of applying motion vectors, which describe the directions objects in the image are moving in across frames, to the native/higher resolution output, so the appearance of the next frame can be estimated in advance.
DLSS 2.0 gets its speed boost through its updated AI network that uses Tensor Cores more efficiently, allowing for better framerates and the elimination of limitations on GPUs, settings and resolutions. Team Green also says DLSS 2.0 renders just 25-50% of the pixels (and only 11% of the pixels for DLSS 2.1 Ultra Performance mode), and uses new temporal feedback techniques for even sharper details and better stability over the original DLSS.
Nvidia’s NGX supercomputer still has to train the DLSS 2.0 network, which is also a convolution autoencoder. Two things go into it, as per Nvidia: “low resolution, aliased images rendered by the game engine” and “low resolution, motion vectors from the same images — also generated by the game engine.”
DLSS 2.0 uses those motion vectors for temporal feedback, which the convolution autoencoder (or DLSS 2.0 network) performs by taking “the low resolution current frame and the high resolution previous frame to determine on a pixel-by-pixel basis how to generate a higher quality current frame,” as Nvidia puts it.
The training process for the DLSS 2.0 network also includes comparing the image output to an “ultra-high-quality” reference image rendered offline in 16K resolution (15360 x 8640). Differences between the images are sent to the AI network for learning and improvements. Nvidia’s supercomputer repeatedly runs this process, on potentially tens of thousands or even millions of reference images over time, yielding a trained AI network that can reliably produce images with satisfactory quality and resolution.
With both DLSS and DLSS 2.0, after the AI network’s training for the new game is complete, the NGX supercomputer sends the AI models to the Nvidia RTX graphics card through GeForce Game Ready drivers. From there, your GPU can use its Tensor Cores’ AI power to run the DLSS 2.0 in real-time alongside the supported game.
Because DLSS 2.0 is a general approach rather than being trained by a single game, it also means the quality of the DLSS 2.0 algorithm can improve over time without a game needing to include updates from Nvidia. The updates reside in the drivers and can impact all games that utilize DLSS 2.0.
This article is part of the Tom’s Hardware Glossary.
Further reading:
- Best Graphics Cards
- GPU Benchmarks and Hierarchy